Finite Automata



FINITE AUTOMATION

      A. Pengertian Finite Automata
Finite automata adalah mesin abstrak berupa sistem model matematika dengan masukan dan keluaran diskrit yang dapat mengenali bahasa paling sederhana (bahasa reguler) dan dapat diimplementasikan secara nyata dimana sistem dapat berada disalah satu dari sejumlah berhingga konfigurasi internal disebut state. Finite Automaton memiliki konsep sebagai bentuk paling sederhana dari peralatan komputerisasi abstrak. Finite- state control dari suatu finite automaton juga merupakan inti dari begitu banyak peralatan komputer yang kompleks.
State sistem merupakan ringkasan informasi yang berkaitan dengan masukan-masukan sebelumnya yang diperlukan untuk menentukan perilaku sistem pada masukan-masukan berikutnya.            
Finite Automata menggunakan prosedur yang saat diberikan masukan "string berhingga" akan berhenti
Finite Automata menyatakan "ya" dengan sejumlah berhingga komputasi jika string tersebut merupakan elemen bahasa sehingga lebih berfokus pada pengenalan dimana bila diberikan suatu program (string) akan menyatakan apakah string tersebut termasuk di bahasa atau tidak.
Automaton memiliki suatu alur khusus dan unik untuk setiap kata yang akan dikenali atau diterima. Jika suatu alur berakhir pada suatu state yang disebut sebagai final state atau accepting state, maka kata yang ditelusuri tersebut dikatakan dikenali oleh automaton.
Komponen dasar yang dimiliki ileh Finite Automaton adalah alphabet yaitu himpunan symbol/ lambang yang dikenali. Himpunan alfabet diwakili dengan  jika dan hanya jika  ∑ merupakan himpunan symbol yang bersifat tetap dan bukan merupakan himpunan kosong. Contoh umum dari alphabet adalah 26 (dua puluh enam) huruf yang dikenali dalam bahasa Indonesia ataupun rangkaian karakter ASCII, yang merupakan rangkaian standar dari kode- kode komputer. Sedangkan sebuah word, yang disebutkan juga string atau sentence adalah rangkaian  satu atau lebih alphabet yang telah dinyatakan sebelumnya. Rangkaian word itu sendiri disebut bahasa (language), yang diwakili dengan L. berikut ini adalah contoh alphabet beserta words yang dapat dibentuknya:

  • ∑ = {a, b}, maka contoh words yang dapat dibentuknya yaitu “aab”, “abab”, “a”, “bbbbbb”, dan lain- lain.
  • ∑ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, maka contoh words yang dapat dibentuknya yaitu “26498098”, “100103”, “0000”, dan lain- lain.
Lebih lanjut, concatenation adalah proses menggabungkan dua buah words menjadi satu word baru, yaitu terdiri dari rangkaian alphabet dari word pertama dan disambung dengan rangkaian alphabet dari word ke-dua.
  • ∑ = {a, b}, words = “aaa” dan y = “bbb”dimana setiap a merupakan anggota himpunan ∑, a ∑  dan setiap b anggota himpunan ∑, b ∑.  Maka, gabungan atau concatenation x dan y, dinyatakan dengan x,y = “aaabbb”.
Setelah memiliki pemahaman diatas, maka definisi dari sebuah Finite Automaton dapat ditetapkan sebagai suatu model matematis dari sebuah mesin yang menerima suatu rangkaian words tertentu yang mengandung alphabet .
 

      B.     Defenisi Formal Finite Automaton
  1. ∑ merupakan himpunan alphabet input (himpunan simbol/ lambang yang tetap dan bukan merupakan himpunan kosong)
  2. Q, merupakann himpunan state yang tetap dan bukan merupakan himpunan kosong.
  3. q0, merupakan state awal (start state atau initial state), merupakan anggota dari S.
  4. d, merupakan fungsi transisi antar state; d: S x ∑      S.
  5. F, merupakan himpunan state akhir (final state atau accepting state), merupakan sub-himpunan dari Q.
Secara visual, suatu bagan Finite Automaton diwakili dengan suatu graf berarah dengan rumus G= < V , E > ; dimana  V = Q  dan E =  { | s,t d Q, a d^d (Q,a) =  t }. “V” merupakan himpunan verteks pada graf, “E” merupakan himpunan sisi pada graf yang pada dasarnya merupakan fungsi- fungsi transisi antara state yang satu ke state yang lain (state “s” dan “t”, yang masing- masingnya merupakan anggota dari “Q”). selain itu, setiap sisi graf diberi nama dengan alphabet penghubung (alphabet “a”) antara dua verteks yang dihubungkannya.
Pada umumnya, dalam suatu bagan Finite Automaton terdapat minima satu state akhir. Verteks graf yang menunjukkan suatu state, tetapi bukan state akhir, dinyatakan dengan lingkaran, sedangkan yang menunjukkan suatu state akhir dinyatakan dengan lingkaran ganda, sisi graf yang menunjukkan fungsi transisi dinyatakan dengan tanda panah.
Jadi suatu state dapat menjadi asal dan tujuan dalam suatu fungsi transisi yang melibatkan dua buah state. Ditinjau dari sudut pandang state asal, maka setiap state (kecuali state akhir) pasti menjadi state asal dan memiliki fungsi transisi ke state yang lain, sedangkan state akhir dapat tidak memiliki fungsi transisi state ke yang lain. Ditinjau dari sudut pandang state tujuan, maka setiap state (kecuali state awal) pasti menjadi pasti state tujuan.
      C. Model Finite Automata
Model Finite Automata memiliki ciri-ciri:
- Memori 'infinite'-nya adalah null (tidak ada memori sementara).
Contoh :
- head hanya bergerak 1 arah.
- Hanya berisi memori masukan berupa tape berisi string masukan dan sejumlah kendali  berhingga.
D. Properti Finite Automata
Finite Automata memiliki:
- 1 himpunan state kendali berhingga
- Simbol-simbol masukan yang dibolehkan/diijinkan
- State mula (initial state)
- Himpunan state akhir (set of final states)
         State-state yang menandai diterimanya masukan.
       - Fungsi transisi state (state transition function)
Adanya fungsi yang memberikan state saat itu (current state) dan simbol masukan saat itu (current input symbol). Selain itu juga fungsi memberikan/menyatakan semua state berikutnya yang dimungkinkan.
Semua kemungkinan transisi dipandang dijalankan secara paralel. Bila terdapat transisi yang menuju/sampai state akhir, berarti string masukan diterima otomata.

      E.     Cara Kerja Finite Automata
Finite Automata bekerja dengan cara mesin membaca memori masukan berupa tape yaitu 1 karakter tiap saat (dari kiri ke kanan) menggunakan head baca yang dikendalikan oleh kotak kendali state berhingga dimana pada mesin terdapat sejumlah state berhingga.
       Finite Automata selalu dalam kondisi yang disebut state awal (initial state) pada saat Finite Automata mulai membaca tape. Perubahan state terjadi pada mesin ketika sebuah karakter berikutnya dibaca.
Ketika head telah sampai pada akhir tape dan kondisi yang ditemui adalah state akhir, maka string yang terdapat pada tape dikatakan diterima Finite Automata (String-string merupakan milik bahasa bila diterima Finite Automata bahasa tersebut).

Contoh :
Cara kerja :
      §  Pita input terdiri dari sel-sel berisi sebuah simbol.
      §  Pita input bergerak satu arah.
      §  Tanda di belakang huruf a menunjukan kondisi awal
      §  Jendela menunjukkan simbol yang sedang terbaca
      §  Tanda di depan huruf a menandakan proses input selesai dan string diterima
 F.  Implementasi  Finite  Automata
Sistem
dengan state berhingga diterapkan  pada:
-Sistem
elevator (lift)
-Mesin pengeluar minuman kaleng (vending machine)
- Pengatur lampu lalu lintas (traffic light regulator)
- Sirkuit penyaklaran (switching) di komputer dan telekomunikasi
- Protokol komunikasi (communication protocol)
- Analisis Leksikal (Lexical analyzer), dan lail sebagainya.


G. KESIMPULAN
1. State sistem merupakan ringkasan informasi yang berkaitan dengan masukan-masukan sebelumnya yang diperlukan untuk menentukan perilaku sistem pada masukan-masukan berikutnya.           
2. Finite automata merupakan elemen bahasa sehingga lebih berfokus pada pengenalan dimana bila diberikan suatu program (string) akan menyatakan apakah string tersebut termasuk di bahasa atau tidak.
      3. Finite  Automaton adalah alphabet yaitu himpunan symbol/ lambang yang dikenali. Himpunan    alfabet diwakili dengan  jika dan hanya jika  ∑ merupakan himpunan symbol yang bersifat tetap   dan bukan merupakan himpunan kosong.




Subscribe to receive free email updates:

0 Response to "Finite Automata"

Post a Comment